Nos domaines de formation :

Formation Microsoft Azure Machine Learning, développer et exploiter des algorithmes

Stage pratique
Durée : 3 jours
Réf : AZL
Prix  2018 : 1990 € H.T.
Pauses et déjeuners offerts
  • Programme
  • Participants / Prérequis
  • Intra / sur-mesure
Programme

Les algorithmes s'imposent comme l'un des sujets prédominants du Big Data. Ce sont les outils des méthodes exploratoires, explicatives ou prédictives que l'on applique aux données, dans le cadre du Machine Learning. Ce cours vous permettra d'acquérir les compétences nécessaires à l'utilisation d'Azure Machine Learning.

Objectifs pédagogiques

  • Prendre en main l'interface d'Azure Machine Learning
  • Choisir parmi plusieurs algorithmes équivalents selon une problématique
  • Découvrir les bases des langages R et Python pour augmenter les capacités d'Azure Machine Learning
  • Exploiter une expérience au travers d'un Web Service

Exercice

Cas pratiques sur des données réalistes et volumineuses
PROGRAMME DE FORMATION

Prise en main de l'interface Azure Machine Learning

  • L'offre Azure. Facturation à l'usage.
  • Prise en main de l'interface Machine Learning Studio.
  • Créer un dataset. Se connecter à une source de données.
  • Construire une expérience de ML.
  • Définir un Web Service prédictif.
  • La Gallery Cortana Intelligence.

Travaux pratiques
Prise en main de l'interface Azure ML. Création d'un dataset. Définition d'un Web Service prédictif.

Créer une expérience de Machine Learning

  • Utiliser l'arbre de choix des algorithmes.
  • Détecter les valeurs aberrantes.
  • Choisir les variables de l'algorithme (features sélection).
  • Initialiser le modèle, entraîner le modèle, évaluer le modèle.
  • Reformer un modèle prédictif.
  • Transformer les variables de l’algorithme (features engineering).
  • Limiter les lignes d’un jeu de données.

Travaux pratiques
Évaluer des différents algorithmes à l'aide de la courbe ROC.

Savoir paramétrer les grandes familles d'algorithmes

  • Algorithmes de clustering (approche non supervisée).
  • Algorithmes de régression linéaire.
  • Algorithmes de régression logistique ou ordinale.
  • Algorithmes de classification (approche supervisée) binaire ou one-versus-all.
  • Méthodes ensemblistes (forêt, jungle…).
  • Packages R et Python. Le framework Vowpall Wabbit.
  • Paramétrage des algorithmes.

Travaux pratiques
Paramétrer des familles d'algorithmes avec R/Python.

Traiter d'autres types de données

  • Analyser les séries temporelles, détecter les anomalies.
  • Analyse de données textuelles avec les packages R.
  • Appliquer un algorithme Vowpal Wabbit (Latent Dirichlet Analysis).
  • Exploiter les images avec notebooks Jupyter.

Travaux pratiques
Traitement des données texte ou image.

Découvrir le nouvel outil Azure Machine Learning Workbench

  • Nouvelles briques Azure pour le ML (Experimentation / Model Management).
  • Rôle et installation du client Workbench.
  • Inspection et préparation des données (transformations par exemple, transformations avancées).
  • Développement dans un notebook.
  • Suivi des exécutions et des métriques d’évaluation.
  • Scénarios de déploiement (local/Spark/Docker).

Travaux pratiques
Préparation de données avec Azure ML Workbench.

Participants / Prérequis

» Participants

Data Scientists, data miners, statisticiens, développeurs en charge de la mise en production des modèles.

» Prérequis

Connaissances de base en statistiques (centrage, dispersion, corrélation, tests d'hypothèses). Des notions de programmation ou d'algorithmique peuvent être utiles.
Intra / sur-mesure
Programme standard     Programme sur-mesure
Oui / Non

Vos coordonnées

Dates de sessions

Pour vous inscrire, cliquez sur la session qui vous intéresse.
[-]
PARIS

Horaires

Les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45.
Pour les stages pratiques de 4 ou 5 jours, les sessions se terminent à 15h30 le dernier jour.